Алгоритмы cжатия изображений

         

Схема алгоритма декомпрессии изображений



Схема алгоритма декомпрессии изображений

Декомпрессия алгоритма фрактального сжатия чрезвычайно проста. Необходимо провести несколько итераций трехмерных аффинных преобразований, коэффициенты которых были получены на этапе компрессии.

В качестве начального может быть взято абсолютно любое изображение (например, абсолютно черное), поскольку соответствующий математический аппарат гарантирует нам сходимость последовательности изображений, получаемых в ходе итераций IFS, к неподвижному изображению (близкому к исходному). Обычно для этого достаточно 16 итераций.

Прочитаем из файла коэффициенты всех блоков;
Создадим черное изображение нужного размера;
Until(изображение не станет неподвижным){
For(every range (R)){
        D=image->CopyBlock(D_coord_for_R);
        For(every pixel(i,j) in the block{
            Rij = 0.75Dij + oR;
        } //Next pixel
    } //Next block
}//Until end

Поскольку мы записывали коэффициенты для блоков Rij (которые, как мы оговорили, в нашем частном случае являются квадратами одинакового размера) последовательно, то получается, что мы последовательно заполняем изображение по квадратам сетки разбиения использованием аффинного преобразования.

Как можно подсчитать, количество операций на один пиксел изображения в градациях серого при восстановлении необычайно мало (N операций “+”, 1 операций “* ”, где N — количество итераций, т.е. 7-16). Благодаря этому, декомпрессия изображений для фрактального алгоритма проходит быстрее декомпрессии, например, для алгоритма JPEG, в котором на точку приходится (при оптимальной реализации операций обратного ДКП и квантования) 64 операции “+” и 64 операции “? ” (без учета шагов RLE и кодирования по Хаффману!). При этом для фрактального алгоритма умножение происходит на рациональное число, одно для каждого блока. Это означает, что мы можем, во-первых, использовать целочисленную рациональную арифметику, которая существенно быстрее арифметики с плавающей точкой. Во-вторых, умножение вектора на число — более простая и быстрая операция, часто закладываемая в архитектуру процессора (процессоры SGI, Intel MMX...), чем скалярное произведение двух векторов, необходимое в случае JPEG. Для полноцветного изображения ситуация качественно не изменяется, поскольку перевод в другое цветовое пространство используют оба алгоритма.

Содержание раздела