Английское название рекурсивного сжатия — wavelet. На русский язык оно переводится как волновое сжатие, и как сжатие с использованием всплесков. Этот вид архивации известен довольно давно и напрямую исходит из идеи использования когерентности областей. Ориентирован алгоритм на цветные и черно-белые изображения с плавными переходами. Идеален для картинок типа рентгеновских снимков. Коэффициент сжатия задается и варьируется в пределах 5-100. При попытке задать больший коэффициент на резких границах, особенно проходящих по диагонали, проявляется “лестничный эффект” — ступеньки разной яркости размером в несколько пикселов.
Идея алгоритма заключается в том, что мы сохраняем в файл разницу — число между средними значениями соседних блоков в изображении, которая обычно принимает значения, близкие к 0.
Так два числа a2i и a2i+1 всегда можно представить в виде b1i=(a2i+a2i+1)/2 и b2i=(a2i-a2i+1)/2. Аналогично последовательность ai может быть попарно переведена в последовательность b1,2i.
Разберем конкретный пример: пусть мы сжимаем строку из 8 значений яркости пикселов (ai): (220, 211, 212, 218, 217, 214, 210, 202). Мы получим следующие последовательности b1i, и b2i: (215.5, 215, 215.5, 206) и (4.5, -3, 1.5, 4). Заметим, что значения b2i достаточно близки к 0. Повторим операцию, рассматривая b1i как ai. Данное действие выполняется как бы рекурсивно, откуда и название алгоритма. Мы получим из (215.5, 215, 215.5, 206): (215.25, 210.75) (0.25, 4.75). Полученные коэффициенты, округлив до целых и сжав, например, с помощью алгоритма Хаффмана с фиксированными таблицами, мы можем поместить в файл.
Заметим, что мы применяли наше преобразование к цепочке только два раза. Реально мы можем позволить себе применение wavelet- преобразования 4-6 раз. Более того, дополнительное сжатие можно получить, используя таблицы алгоритма Хаффмана с неравномерным шагом (т.е. нам придется сохранять код Хаффмана для ближайшего в таблице значения). Эти приемы позволяют достичь заметных коэффициентов сжатия.
Содержание раздела